???global.info.a_carregar???
Alex Jenkins. Works in the area(s) of Exact Sciences with emphasis on Physical Sciences with emphasis on Condensed Matter Physics. In his curriculum Ciência Vitae the most frequent terms in the context of scientific, technological and artistic-cultural output are: Magnetism; Spintronics; Nanotechnology; Magnetic tunnel junctions; .
Identificação

Identificação pessoal

Nome completo
Alex Jenkins

Nomes de citação

  • Jenkins, Alex

Identificadores de autor

Ciência ID
391C-51CF-E12A
ORCID iD
0000-0002-6188-7755

Domínios de atuação

  • Ciências Exatas - Física - Física da Matéria Condensada
Formação
Grau Classificação
2006/01/09 - 2011/01/03
Concluído
Phd in Condensed Matter Physics (Doctor)
University of Leeds, Reino Unido
Percurso profissional

Ciência

Categoria Profissional
Instituição de acolhimento
Empregador
2016/03/01 - Atual Investigador principal (carreira) (Investigação) International Iberian Nanotechnology Laboratory, Portugal
2013/03/01 - 2016/02/29 Pós-doutorado (Investigação) Unité Mixte de Physique CNRS/Thalès, França
2011/03/01 - 2013/02 Pós-doutorado (Investigação) SPINtronique et Technologie des Composants, França
Projetos

Bolsa

Designação Financiadores
2021/01 - 2025/02 DEEP OSCILLATORY NEURAL NETWORKS COMPUTING AND LEARNING THROUGH THE DYNAMICS OF RF NEURONS INTERCONNECTED BY RF SPINTRONIC SYNAPSES European Commission
2020/10 - 2024/09 Weighted Spintronic-Nano-Oscillator-based Neuromorphic Computing System Assisted by laser for Cognitive Computing European Commission
2020/09 - 2022/09 Spin-based hardware artificial neural network for embedded RF processing
SPINAR
Investigador
European Commission

Projeto

Designação Financiadores
2018/07/26 - 2022/02/28 Novel magnetic textures in heavy metal/ferromagnet multilayers
PTDC/FIS-MAC/30085/2017
International Iberian Nanotechnology Laboratory, Portugal

Universidade do Porto, Portugal
Fundação para a Ciência e a Tecnologia
Em curso
2018/07/26 - 2021/07/25 Novel magnetic textures in heavy metal/ferromagnet multilayers
PTDC/FIS-MAC/30085/2017
International Iberian Nanotechnology Laboratory, Portugal

Universidade do Porto, Portugal
Fundação para a Ciência e a Tecnologia
Em curso
Produções

Publicações

Artigo em conferência
  1. Bendjeddou, I.; Sidi El Valli, A.; Litvinenko, A.; Le Guennec, Y.; Podevin, F.; Bourdel, S.; Pistono, E.; et al. "Radio Receivers based on Spin-Torque Diodes as Energy Detectors". 2021.
    10.1109/NEWCAS50681.2021.9462731
  2. Farkhani, H.; Bohnert, T.; Tarequzzaman, M.; Costa, D.; Jenkins, A.; Ferreira, R.; Moradi, F.. "Spin-torque-nano-oscillator based neuromorphic computing assisted by laser". 2019.
    10.1109/DTIS.2019.8734967
  3. Grimaldi, E.; Lebrun, R.; Jenkins, A.; Dussaux, A.; Grollier, J.; Cros, V.; Fert, A.; et al. "Spintronic nano-oscillators: Towards nanoscale and tunable frequency devices". 2014.
    10.1109/FCS.2014.6859850
Artigo em revista
  1. Jenkins, A.S.; Alvarez, L.S.E.; Memshawy, S.; Bortolotti, P.; Cros, V.; Freitas, P.P.; Ferreira, R.. "Electrical characterisation of higher order spin wave modes in vortex-based magnetic tunnel junctions". Communications Physics 4 1 (2021): http://www.scopus.com/inward/record.url?eid=2-s2.0-85106941327&partnerID=MN8TOARS.
    10.1038/s42005-021-00614-3
  2. Jenkins, A.S.; Martins, L.; Benetti, L.; Alvarez, L.S.E.; Freitas, P.P.; Ferreira, R.. "Phase variation in the locked state of mutually synchronized spin torque nano-oscillators". Applied Physics Letters 118 17 (2021): http://www.scopus.com/inward/record.url?eid=2-s2.0-85104883339&partnerID=MN8TOARS.
    10.1063/5.0046038
  3. Martins, L.; Jenkins, A.S.; Alvarez, L.S.E.; Borme, J.; Böhnert, T.; Ventura, J.; Freitas, P.P.; Ferreira, R.. "Non-volatile artificial synapse based on a vortex nano-oscillator". Scientific Reports 11 1 (2021): http://www.scopus.com/inward/record.url?eid=2-s2.0-85112066687&partnerID=MN8TOARS.
    10.1038/s41598-021-95569-4
  4. Litvinenko, A.; Sethi, P.; Murapaka, C.; Jenkins, A.; Cros, V.; Bortolotti, P.; Ferreira, R.; Dieny, B.; Ebels, U.. "Analog and Digital Phase Modulation and Signal Transmission with Spin-Torque Nano-Oscillators". Physical Review Applied 16 2 (2021): http://www.scopus.com/inward/record.url?eid=2-s2.0-85114387961&partnerID=MN8TOARS.
    10.1103/PhysRevApplied.16.024048
  5. Jenkins, A.S.; Benetti, L.; Martins, L.; Alvarez, L.S.E.; Ferreira, R.. "Spintronic wireless sensor networks". IEEE Transactions on Magnetics (2021): http://www.scopus.com/inward/record.url?eid=2-s2.0-85107214221&partnerID=MN8TOARS.
    10.1109/TMAG.2021.3082266
  6. Jenkins, Alex. "Digital and analogue modulation and demodulation scheme using vortex-based spin torque nano-oscillators". Scientific Reports 10 1 (2020): http://dx.doi.org/10.1038/s41598-020-68001-6.
    10.1038/s41598-020-68001-6
  7. Jenkins, Alex. "Ultrafast Sweep-Tuned Spectrum Analyzer with Temporal Resolution Based on a Spin-Torque Nano-Oscillator". Nano Letters 20 8 (2020): 6104-6111. http://dx.doi.org/10.1021/acs.nanolett.0c02195.
    10.1021/acs.nanolett.0c02195
  8. Jenkins, Alex. "Detection of the Microwave Emission from a Spin-Torque Oscillator by a Spin Diode". Physical Review Applied 13 4 (2020): http://dx.doi.org/10.1103/physrevapplied.13.044050.
    10.1103/physrevapplied.13.044050
  9. Jenkins, A.S.; San Emeterio Alvarez, L.; Dutra, R.; Sommer, R.L.; Freitas, P.P.; Ferreira, R.. "Wideband High-Resolution Frequency-to-Resistance Converter Based on Nonhomogeneous Magnetic-State Transitions". Physical Review Applied 13 1 (2020): http://www.scopus.com/inward/record.url?eid=2-s2.0-85078849332&partnerID=MN8TOARS.
    10.1103/PhysRevApplied.13.014046
  10. Farkhani, H.; Böhnert, T.; Tarequzzaman, M.; Costa, J.D.; Jenkins, A.; Ferreira, R.; Madsen, J.K.; Moradi, F.. "LAO-NCS: Laser Assisted Spin Torque Nano Oscillator-Based Neuromorphic Computing System". Frontiers in Neuroscience 13 (2020): http://www.scopus.com/inward/record.url?eid=2-s2.0-85079040746&partnerID=MN8TOARS.
    10.3389/fnins.2019.01429
  11. Tarequzzaman, M.; Böhnert, T.; Decker, M.; Costa, J.D.; Borme, J.; Lacoste, B.; Paz, E.; et al. "Spin torque nano-oscillator driven by combined spin injection from tunneling and spin Hall current". Communications Physics 2 1 (2019): http://www.scopus.com/inward/record.url?eid=2-s2.0-85068433540&partnerID=MN8TOARS.
    10.1038/s42005-019-0119-7
  12. Jenkins, A.S.; Alvarez, L.S.E.; Freitas, P.P.; Ferreira, R.. "Nanoscale true random bit generator based on magnetic state transitions in magnetic tunnel junctions". Scientific Reports 9 1 (2019): http://www.scopus.com/inward/record.url?eid=2-s2.0-85074251948&partnerID=MN8TOARS.
    10.1038/s41598-019-52236-z
  13. Tarequzzaman, M.; Bohnert, T.; Jenkins, A.S.; Borme, J.; Paz, E.; Ferreira, R.; Freitas, P.P.. "Influence of MgO tunnel barrier thickness on the output power of three-terminal spin hall nano-oscillators". IEEE Transactions on Magnetics 54 11 (2018): http://www.scopus.com/inward/record.url?eid=2-s2.0-85046744952&partnerID=MN8TOARS.
    10.1109/TMAG.2018.2831242
  14. Tarequzzaman, M.; Jenkins, A.S.; Böhnert, T.; Borme, J.; Martins, L.; Paz, E.; Ferreira, R.; Freitas, P.P.. "Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions". Applied Physics Letters 112 25 (2018): http://www.scopus.com/inward/record.url?eid=2-s2.0-85048958615&partnerID=MN8TOARS.
    10.1063/1.5029363
  15. Costa, J.D.; Serrano-Guisan, S.; Lacoste, B.; Jenkins, A.S.; Böhnert, T.; Tarequzzaman, M.; Borme, J.; et al. "High power and low critical current density spin transfer torque nano-oscillators using MgO barriers with intermediate thickness". Scientific Reports 7 1 (2017): http://www.scopus.com/inward/record.url?eid=2-s2.0-85026763618&partnerID=MN8TOARS.
    10.1038/s41598-017-07762-z
  16. Menshawy, S.; Jenkins, A.S.; Merazzo, K.J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ebels, U.; et al. "Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector". AIP Advances 7 5 (2017): http://www.scopus.com/inward/record.url?eid=2-s2.0-85008151905&partnerID=MN8TOARS.
    10.1063/1.4973389
  17. Lebrun, R.; Tsunegi, S.; Bortolotti, P.; Kubota, H.; Jenkins, A.S.; Romera, M.; Yakushiji, K.; et al. "Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme". Nature Communications 8 (2017): http://www.scopus.com/inward/record.url?eid=2-s2.0-85020705873&partnerID=MN8TOARS.
    10.1038/ncomms15825
  18. Jenkins, A.S.; Lebrun, R.; Grimaldi, E.; Tsunegi, S.; Bortolotti, P.; Kubota, H.; Yakushiji, K.; et al. "Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme". Nature Nanotechnology 11 4 (2016): 360-364. http://www.scopus.com/inward/record.url?eid=2-s2.0-84953253977&partnerID=MN8TOARS.
    10.1038/nnano.2015.295
  19. Tsunegi, S.; Grimaldi, E.; Lebrun, R.; Kubota, H.; Jenkins, A.S.; Yakushiji, K.; Fukushima, A.; et al. "Self-Injection Locking of a Vortex Spin Torque Oscillator by Delayed Feedback". Scientific Reports 6 (2016): http://www.scopus.com/inward/record.url?eid=2-s2.0-84973402688&partnerID=MN8TOARS.
    10.1038/srep26849
  20. Lebrun, R.; Jenkins, A.; Dussaux, A.; Locatelli, N.; Tsunegi, S.; Grimaldi, E.; Kubota, H.; et al. "Understanding of Phase Noise Squeezing under Fractional Synchronization of a Nonlinear Spin Transfer Vortex Oscillator". Physical Review Letters 115 1 (2015): http://www.scopus.com/inward/record.url?eid=2-s2.0-84937870880&partnerID=MN8TOARS.
    10.1103/PhysRevLett.115.017201
  21. Quinsat, M.; Garcia-Sanchez, F.; Jenkins, A.S.; Tiberkevich, V.S.; Slavin, A.N.; Buda-Prejbeanu, L.D.; Zeltser, A.; et al. "Modulation bandwidth of spin torque oscillators under current modulation". Applied Physics Letters 105 15 (2014): http://www.scopus.com/inward/record.url?eid=2-s2.0-84907983932&partnerID=MN8TOARS.
    10.1063/1.4898093
  22. Jenkins, A.S.; Lacoste, B.; Geranton, G.; Gusakova, D.; Dieny, B.; Ebels, U.; Buda-Prejbeanu, L.D.. "Current driven magnetization dynamics of a self-polarised synthetic ferrimagnet". Journal of Applied Physics 115 8 (2014): http://www.scopus.com/inward/record.url?eid=2-s2.0-84896768709&partnerID=MN8TOARS.
    10.1063/1.4866871
  23. Jenkins, A.S.; Grimaldi, E.; Bortolotti, P.; Lebrun, R.; Kubota, H.; Yakushiji, K.; Fukushima, A.; et al. "Controlling the chirality and polarity of vortices in magnetic tunnel junctions". Applied Physics Letters 105 17 (2014): http://www.scopus.com/inward/record.url?eid=2-s2.0-84908453105&partnerID=MN8TOARS.
    10.1063/1.4900743
  24. Dussaux, A.; Grimaldi, E.; Rache Salles, B.; Jenkins, A.S.; Khvalkovskiy, A.V.; Bortolotti, P.; Grollier, J.; et al. "Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer". Applied Physics Letters 105 2 (2014): http://www.scopus.com/inward/record.url?eid=2-s2.0-84904725860&partnerID=MN8TOARS.
    10.1063/1.4885537
  25. Sierra, J.F.; Quinsat, M.; Garcia-Sanchez, F.; Ebels, U.; Joumard, I.; Jenkins, A.S.; Dieny, B.; et al. "Influence of thermal fluctuations on the emission linewidth in MgO-based spin transfer oscillators". Applied Physics Letters 101 6 (2012): http://www.scopus.com/inward/record.url?eid=2-s2.0-84865147467&partnerID=MN8TOARS.
    10.1063/1.4744924

Outros

Outra produção
  1. Hardware realization of the multiply and accumulate operation on radio-frequency signals with magnetic tunnel junctions. 2021. Leroux, N.; Mizrahi, A.; Markovic, D.; Sanz-Hernández, D.; Trastoy, J.; Bortolotti, P.; Martins, L.; et al. http://www.scopus.com/inward/record.url?eid=2-s2.0-85103809899&partnerID=MN8TOARS.
  2. Detection of the microwave emission from a spin-torque oscillator by a spin-torque diode. 2020. Markovic, D.; Leroux, N.; Mizrahi, A.; Trastoy, J.; Cros, V.; Bortolotti, P.; Martins, L.; et al. http://www.scopus.com/inward/record.url?eid=2-s2.0-85094328146&partnerID=MN8TOARS.
  3. Experimental demonstration of a rapid sweep-tuned spectrum analyzer with temporal resolution based on a spin-torque nano-oscillator. 2020. Litvinenko, A.; Iurchuk, V.; Sethi, P.; Louis, S.; Tiberkevich, V.; Li, J.; Jenkins, A.; et al. http://www.scopus.com/inward/record.url?eid=2-s2.0-85094721982&partnerID=MN8TOARS.
  4. Analog and digital phase modulation of spin torque nanooscillators. 2019. Litvinenko, A.; Sethi, P.; Murapaka, C.; Jenkins, A.; Cros, V.; Bortolotti, P.; Ferreira, R.; Dieny, B.; Ebels, U.. http://www.scopus.com/inward/record.url?eid=2-s2.0-85094371107&partnerID=MN8TOARS.
  5. Magnetic oscillations excited by concurrent spin injection from a tunneling current and a spin Hall current. 2018. Tarequzzaman, M.; Böhnert, T.; Decker, M.; Costa, J.D.; Borme, J.; Lacoste, B.; Paz, E.; et al. http://www.scopus.com/inward/record.url?eid=2-s2.0-85095025846&partnerID=MN8TOARS.
  6. Broadband voltage rectifier induced by linear bias dependence in CoFeB/MgO magnetic tunnel junctions. 2018. Tarequzzaman, M.; Jenkins, A.S.; Böhnert, T.; Borme, J.; Martins, L.; Paz, E.; Ferreira, R.; Freitas, P.P.. http://www.scopus.com/inward/record.url?eid=2-s2.0-85095078083&partnerID=MN8TOARS.
  7. A multi-band analogue frequency sensor with sub-MHz resolution based on a Vortex Nano-Oscillator. 2018. Jenkins, A.S.; Alvarez, L.S.E.; Dutra, R.; Sommer, R.L.; Freitas, P.P.; Ferreira, R.. http://www.scopus.com/inward/record.url?eid=2-s2.0-85094507097&partnerID=MN8TOARS.