???global.info.a_carregar???
Identificação

Identificação pessoal

Nome completo
MÁRIO SEQUEIRA RODRIGUES FIGUEIRA

Nomes de citação

  • FIGUEIRA, MÁRIO

Identificadores de autor

Ciência ID
E41C-ABFD-51C3
ORCID iD
0000-0001-5237-2138
Formação
Grau Classificação
1979/02/22
Concluído
Matemática (Doutoramento)
Especialização em Especialidade: Análise Matemática
Universidade de Lisboa, Portugal
"Sobre a Equação de Schrodinger Não Linear" (TESE/DISSERTAÇÃO)
Percurso profissional

Docência no Ensino Superior

Categoria Profissional
Instituição de acolhimento
Empregador
1994/05/31 - 2015/01/01 Professor Catedrático (Docente Universitário) Universidade de Lisboa Faculdade de Ciências, Portugal
1994/05/31 - 2015/01/01 Professor Catedrático (Docente Universitário) Universidade de Lisboa Faculdade de Ciências, Portugal
1979/12/01 - 1994/05/30 Professor Associado (Docente Universitário) Universidade de Lisboa Faculdade de Ciências, Portugal
1979/03/01 - 1979/11/30 Professor Auxiliar (Docente Universitário) Universidade de Lisboa Faculdade de Ciências, Portugal
1978/03/01 - 1979/02/28 Assistente (Docente Universitário) Universidade de Lisboa Faculdade de Ciências, Portugal
Projetos

Projeto

Designação Financiadores
2019/01/01 - 2019/12/31 Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
UID/MAT/04561/2019
FCiênciasID Associação para a Investigação e Desenvolvimento de Ciências, Portugal

Universidade de Lisboa Faculdade de Ciências, Portugal

Fundação da Faculdade de Ciências da Universidade de Lisboa, Portugal
Fundação para a Ciência e a Tecnologia
Concluído
2011/02/01 - 2014/04/30 Sistemas Hiperbólicos Não-Lineares: Teoria e aproximação numérica
PTDC/MAT/110613/2009
Fundação da Faculdade de Ciências da Universidade de Lisboa, Portugal

Universidade de Lisboa Faculdade de Ciências, Portugal
Fundação para a Ciência e a Tecnologia
Concluído
2011/01/01 - 2013/12/31 Projecto Estratégico - UI 297 - 2011-2012
PEst-OE/MAT/UI0297/2011
Universidade NOVA de Lisboa Faculdade de Ciências e Tecnologia, Portugal

Universidade Nova Centro de Matemática e Aplicações, Portugal
Fundação para a Ciência e a Tecnologia
Concluído
2011/01/01 - 2012/12/31 Projecto Estratégico - UI 209 - 2011-2012
PEst-OE/MAT/UI0209/2011
Fundação da Faculdade de Ciências da Universidade de Lisboa, Portugal

Universidade de Lisboa Centro de Matemática Aplicações Fundamentais e Investigação Operacional, Portugal
Fundação para a Ciência e a Tecnologia
Concluído
Produções

Publicações

Artigo em jornal
  1. Dias, João-Paulo; Figueira, Mário. Autor correspondente: Dias, João-Paulo. "On the existence of weak solutions for a semilinear singular hyperbolic system", Rev. Mat. Univ. Complut. Madrid, 1991
Artigo em revista
  1. Correia,S.; Figueira,M.. "A note on bifurcations from eigenvalues of the Dirichlet-Laplacian with arbitrary multiplicity". Nonlinear Differential Equations and Applications NoDEA 30 3 (2023): http://dx.doi.org/10.1007/s00030-023-00846-y.
    10.1007/s00030-023-00846-y
  2. Correia, S.; Figueira, M.. "A generalized complex Ginzburg-Landau equation: Global existence and stability results". Communications on Pure & Applied Analysis 0 0 (2021): 0-0. http://dx.doi.org/10.3934/cpaa.2021056.
    10.3934/cpaa.2021056
  3. Correia, S.; Figueira, M.. "Some stability results for the complex Ginzburg–Landau equation". Communications in Contemporary Mathematics 22 08 (2020): 1950038-1950038. http://dx.doi.org/10.1142/s021919971950038x.
    10.1142/s021919971950038x
  4. Correia, S.; Figueira, M.. "Some L- infinity solutions of the hyperbolic nonlinear Schrödinger equation and their stability". Advances in Differential Equations (2019):
  5. Correia, S.; Figueira, M.. "Existence and Stability of Spatial Plane Waves for the Incompressible Navier–Stokes in $$\mathbb {R}^3$$ R 3". Journal of Mathematical Fluid Mechanics 20 1 (2018): 189-197. http://dx.doi.org/10.1007/s00021-017-0317-6.
    10.1007/s00021-017-0317-6
  6. Correia, S.; Figueira, M.. "Spatial plane waves for the nonlinear Schrödinger equation: Local existence and stability results". Communications in Partial Differential Equations 42 4 (2017): 519-555. http://www.scopus.com/inward/record.url?eid=2-s2.0-85016113221&partnerID=MN8TOARS.
    10.1080/03605302.2017.1295059
  7. Dias, J..-P.; Figueira, M.; Konotop, V.V.. "Coupled Nonlinear Schrödinger Equations with a Gauge Potential: Existence and Blowup". Studies in Applied Mathematics 136 3 (2016): 241-262. http://www.scopus.com/inward/record.url?eid=2-s2.0-84947976218&partnerID=MN8TOARS.
    10.1111/sapm.12102
  8. Dias, J.-P.; Figueira, M.; Konotop, V.V.. "The cauchy problem for coupled nonlinear Schrödinger equations with linear damping: Local and global existence and blowup of solutions". Chinese Annals of Mathematics. Series B 37 5 (2016): 665-682. http://www.scopus.com/inward/record.url?eid=2-s2.0-84982252285&partnerID=MN8TOARS.
    10.1007/s11401-016-1006-0
  9. Dias, J.-P.; Figueira, M.; Oliveira, F.. "Existence and linearized stability of solitary waves for a quasilinear Benney system". Proceedings of the Royal Society of Edinburgh Section A: Mathematics 146 3 (2016): 547-564. http://www.scopus.com/inward/record.url?eid=2-s2.0-84961252773&partnerID=MN8TOARS.
    10.1017/S0308210515000578
  10. Dias, J.-P.; Figueira, M.; Konotop, V.V.; Zezyulin, D.A.. "Supercritical blowup in coupled parity-time-symmetric nonlinear schrödinger equations". Studies in Applied Mathematics 133 4 (2014): 422-440. http://www.scopus.com/inward/record.url?eid=2-s2.0-84911985081&partnerID=MN8TOARS.
    10.1111/sapm.12063
  11. Antontsev, S.; Dias, J.-P.; Figueira, M.. "Complex ginzburg-landau equation with absorption: Existence, uniqueness and localization properties". Journal of Mathematical Fluid Mechanics 16 2 (2014): 211-223. http://www.scopus.com/inward/record.url?eid=2-s2.0-84904613345&partnerID=MN8TOARS.
    10.1007/s00021-013-0147-0
  12. Cazenave, T.; Dias, J.-P.; Figueira, M.. "Finite-time blowup for a complex Ginzburg-Landau equation with linear driving". Journal of Evolution Equations 14 2 (2014): 403-415. http://www.scopus.com/inward/record.url?eid=2-s2.0-84901246118&partnerID=MN8TOARS.
    10.1007/s00028-014-0220-z
  13. Dias, O.-P.; Figueira, M.. "On the blowup of solutions of a schrödinger equation with an inhomogeneous damping coefficient". Communications in Contemporary Mathematics 2 (2013): 1-11. http://www.scopus.com/inward/record.url?eid=2-s2.0-84884519185&partnerID=MN8TOARS.
    10.1142/S0219199713500363
  14. Amorim, P.; Dias, J.-P.; Figueira, M.; LeFloch, P.G.. "The Linear Stability of Shock Waves for the Nonlinear Schrödinger-Inviscid Burgers System". Journal of Dynamics and Differential Equations 25 1 (2013): 49-69. http://www.scopus.com/inward/record.url?eid=2-s2.0-84874571924&partnerID=MN8TOARS.
    10.1007/s10884-012-9283-0
  15. Amorim, P.; Figueira, M.. "Convergence of a numerical scheme for a coupled Schrödinger-KdV system". Revista Matematica Complutense 26 2 (2013): 409-426. http://www.scopus.com/inward/record.url?eid=2-s2.0-84879840925&partnerID=MN8TOARS.
    10.1007/s13163-012-0097-8
  16. Amorim, P.; Figueira, M.. "Convergence of a finite difference method for the KdV and modified KdV equations with L2 data". Portugaliae Mathematica 70 1 (2013): 23-50. http://www.scopus.com/inward/record.url?eid=2-s2.0-84882588556&partnerID=MN8TOARS.
    10.4171/PM/1924
  17. Antontsev, S.; Dias, J.P.; Figueira, M.; Oliveira, F.. "Erratum: Non-existence of global solutions for a quasilinear benney system (Journal of Mathematical Fluid Mechanics DOI: 10.1007/s00021-009-0014-1)". Journal of Mathematical Fluid Mechanics 13 2 (2011): http://www.scopus.com/inward/record.url?eid=2-s2.0-79958837481&partnerID=MN8TOARS.
    10.1007/s00021-009-0021-2
  18. Amorim, P.; Figueira, M.. "Convergence of numerical schemes for short wave long wave interaction equations". Journal of Hyperbolic Differential Equations 8 4 (2011): 777-811. http://www.scopus.com/inward/record.url?eid=2-s2.0-84555195064&partnerID=MN8TOARS.
    10.1142/S0219891611002573
  19. Antontsev, S.; Dias, J.P.; Figueira, M.; Oliveira, F.. "Non-existence of global solutions for a quasilinear Benney system". Journal of Mathematical Fluid Mechanics 13 2 (2011): 213-222. http://www.scopus.com/inward/record.url?eid=2-s2.0-79958800993&partnerID=MN8TOARS.
    10.1007/s00021-009-0014-1
  20. Dias, J.-P.; Figueira, M.; Oliveira, F.. "On the Cauchy Problem describing an electron-phonon interaction". Chinese Annals of Mathematics. Series B 32 4 (2011): 483-496. http://www.scopus.com/inward/record.url?eid=2-s2.0-79960025043&partnerID=MN8TOARS.
    10.1007/s11401-011-0663-2
  21. Dias, J.P.; Figueira, M.; Frid, H.. "Vanishing viscosity with short wave-long wave interactions for multi-D scalar conservation laws". Journal of Differential Equations 251 3 (2011): 492-503. http://www.scopus.com/inward/record.url?eid=2-s2.0-79956259156&partnerID=MN8TOARS.
    10.1016/j.jde.2011.05.007
  22. Dias, J.P.; Figueira, M.; Frid, H.. "Vanishing viscosity with short wave-long wave interactions for systems of conservation laws". Archive for Rational Mechanics and Analysis 196 3 (2010): 981-1010. http://www.scopus.com/inward/record.url?eid=2-s2.0-77952009093&partnerID=MN8TOARS.
    10.1007/s00205-009-0273-2
  23. Dias, J.-P.; Figueira, M.; Oliveira, F.. "Existence of bound states for the coupled Schrödinger-KdV system with cubic nonlinearity | Existence d'ondes solitaires pour le système couplé de Schrödinger-KdV avec non linearité cubique.". Comptes Rendus Mathematique 348 19-20 (2010): 1079-1082. http://www.scopus.com/inward/record.url?eid=2-s2.0-77958484584&partnerID=MN8TOARS.
    10.1016/j.crma.2010.09.018
  24. Dias, J.-P.; Figueira, M.; Oliveira, F.. "Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system". Nonlinear Analysis, Theory, Methods and Applications 73 8 (2010): 2686-2698. http://www.scopus.com/inward/record.url?eid=2-s2.0-77955469879&partnerID=MN8TOARS.
    10.1016/j.na.2010.06.049
  25. Amorim, P.; Figueira, M.. "Convergence of semi-discrete approximations of Benney equations". Comptes Rendus Mathematique 347 19-20 (2009): 1135-1140. http://www.scopus.com/inward/record.url?eid=2-s2.0-71749113389&partnerID=MN8TOARS.
    10.1016/j.crma.2009.08.002
  26. Dias, J.-P.; Figueira, M.; Oliveira, F.. "Existence of local strong solutions for a quasilinear Benney system". Comptes Rendus Mathematique 344 8 (2007): 493-496. http://www.scopus.com/inward/record.url?eid=2-s2.0-34247379907&partnerID=MN8TOARS.
    10.1016/j.crma.2007.03.005
  27. Dias, J.-P.; Figueira, M.. "Existence of weak solutions for a quasilinear version of Benney equations". Journal of Hyperbolic Differential Equations 4 3 (2007): 555-563. http://www.scopus.com/inward/record.url?eid=2-s2.0-34447254593&partnerID=MN8TOARS.
    10.1142/S0219891607001252
  28. Dias, J.-P.; Figueira, M.; Rodrigues, J.-F.. "Solutions to a scalar discontinuous conservation law in a limit case of phase transitions". Journal of Mathematical Fluid Mechanics 7 2 (2005): 153-163. http://www.scopus.com/inward/record.url?eid=2-s2.0-18244398795&partnerID=MN8TOARS.
    10.1007/s00021-004-0113-y
  29. Dias, J.-P.; Figueira, M.. "On the viscous Cauchy problem and the existence of shock profiles for a p-system with a discontinuous stress function". Quarterly of Applied Mathematics 63 2 (2005): 335-341. http://www.scopus.com/inward/record.url?eid=2-s2.0-23044471792&partnerID=MN8TOARS.
  30. Dias, J.-P.; Figueira, M.. "On the approximation of the solutions of the Riemann problem for a discontinuous conservation law". Bulletin of the Brazilian Mathematical Society 36 1 (2005): 115-125. http://www.scopus.com/inward/record.url?eid=2-s2.0-18244383502&partnerID=MN8TOARS.
    10.1007/s00574-005-0031-5
  31. Dias, J.-P.; Figueira, M.. "On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions". Communications on Pure and Applied Analysis 3 1 (2004): 53-58. http://www.scopus.com/inward/record.url?eid=2-s2.0-18244362942&partnerID=MN8TOARS.
  32. Dias, J.P.; Figueira, M.. "On the uniqueness of the weak solutions of a quasilinear hyperbolic system with a singular source term". Chinese Annals of Mathematics. Series B 23 3 (2002): 317-324. http://www.scopus.com/inward/record.url?eid=2-s2.0-0036035985&partnerID=MN8TOARS.
    10.1142/S0252959902000298
  33. Dias, J.-P.; Figueira, M.. "A remark on the existence of global BV solutions for a nonlinear hyperbolic wave equation". Quarterly of Applied Mathematics 60 2 (2002): 245-250. http://www.scopus.com/inward/record.url?eid=2-s2.0-0036608279&partnerID=MN8TOARS.
  34. Dias, J.-P.; Figueira, M.. "On the radial weak solutions of a conservative system modeling the isentropic flow". Rend. Mat. Appl. (2001):
  35. Dias, J.-P.; Figueira, M.. "Local existence in Cb 0,1 and blow-up of the solutions of the Cauchy Problem for a quasilinear hyperbolic system with a singular source term". Bulletin of the Brazilian Mathematical Society 32 3 (2001): 343-357. http://www.scopus.com/inward/record.url?eid=2-s2.0-27144464890&partnerID=MN8TOARS.
  36. Dias, J.-P.; Figueira, M.. "Blow-up and Global Existence of a Weak Solution for a sine-Gordon Type Quasilinear Wave Equation". Bollettino della Unione Matematica Italiana B 3 3 (2000): 739-750. http://www.scopus.com/inward/record.url?eid=2-s2.0-0041684430&partnerID=MN8TOARS.
  37. Dias, J.-P.; Figueira, M.. "On the stability of the weak solutions for a quasilinear equation with a semilinear source term". Advances in Mathematical Sciences and Applications (1998):
  38. Dias, J.-P.; Figueira, M.; Sanchez, L.. "On the existence of shock fronts for a burgers equation with a singular source term". Mathematical Methods in the Applied Sciences 21 12 (1998): 1107-1113. http://www.scopus.com/inward/record.url?eid=2-s2.0-0032138486&partnerID=MN8TOARS.
  39. Dias, J.-P.; Figueira, M.. "A remark on the blow-up of the solutions of the equation u_t+f(x)a(u)u_x=h(x,u)". Revista Matematica de la Universidad Complutense de Madrid (1996):
  40. Dias, J.-P.; Figueira, M.. "Existence d'une solution faible pour une équation d'ondes quasi-linéaire avec un terme de source semi-linéaire". C. R. Acad. Sci. Paris (1996):
  41. Dias, J.-P.; Figueira, M.. "On the blow-up of the solutions of a quasilinear wave equation with a semilinear source term". Mathematical Methods in the Applied Sciences 19 14 (1996): 1135-1140. http://www.scopus.com/inward/record.url?eid=2-s2.0-0030246563&partnerID=MN8TOARS.
  42. Dias, J.-P.; Figueira, M.. "On a class of solutions for the simplified Wheeler-DeWitt equation with a massless single scalar field". Ricerche di Mathematica (1995):
  43. Dias, J.-P.; Figueira, M.; Rauch, J.. "Scattering for a one-sided Klein-Gordon equation in quantum gravity". Annales de l'Institut Henri Poincare-Physique Theorique (1994):
  44. Berestycki, H.; Dias, J.-P.; Esteban, M.J.; Mário Figueira. "Eigenvalue problems for some nonlinear Wheeler-DeWitt operators". J. Math. Pures Appl. (1993):
  45. Dias, J.-P.; Figueira, M.. "On a singular limit for a class of solutions of the simplified Wheeler-DeWitt equation with a massless single scalar field". Rend. Mat. Appl. (1993):
  46. Dias, J.-P.; Figueira, M.. "The Cauchy problem for a nonlinear Wheeler-DeWitt equation". Ann. Inst. H. Poincaré Anal. Non Linéaire (1993):
    http://doi.org/10.1016/s0294-1449(16)30223-2
  47. Dias, J.-P.; Figueira, M.. "The simplified Wheeler-DeWitt equation: the Cauchy problem and some spectral properties". Ann. Inst. H. Poincaré Phys. Théor. (1991):
  48. Dias, J._P.; Figueira, M.. "On the existence of a global solution of the Cauchy problem for a Klein-Gordon-Dirac system". J. Math. Pures Appl. (1991):
  49. Dias, J.-P.; Figueira, M.. "Nonexistence of bound states for a nonlinear Dirac equation". Houston J. Math. (1990):
  50. Dias, J.-P.; Figueira, M.. "On the existence of weak solutions for a nonlinear time dependent Dirac equation". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 113 1-2 (1989): 149-158. http://www.scopus.com/inward/record.url?eid=2-s2.0-84971157148&partnerID=MN8TOARS.
    10.1017/S030821050002401X
  51. Dias, J.-P.; Figueira, M.. "Solutions faibles du problème de Cauchy pour certaines équations de Dirac non linéaires". Portugal. Math. (1989):
  52. Dias, J.-P.; Figueira, M.. "Remarque sur le problème de Cauchy pour une équation de Dirac non linéaire avec masse nulle". Portugal. Math. (1988):
  53. Dias, J.-P.; Figueira, M.. "global existence of solutions with small initial data in H^s for the massive nonlinear Dirac equations in 3 space dimensions". Bulletino della Unione Matematica Italiana (1987):
  54. Dias, J.-P.; Figueira, M.. "Sur l'existence d'une solution globale pour une équation de Dirac non linéaire avec masse nulle". C. R. Acad. Sci. Paris (1987):
  55. Dias, J.-P.; Figueira, M.. "Remarks on the bound states of the Dirac equation with Coulomb potential". Rendiconti del Seminario Matematico. Università e Politecnico Torino (1986):
  56. Dias, J.-P.; Figueira, M.. "Time decay for the solutions of a nonlinear Dirac equation in one space dimension". Ricerche Mat. (1986):
  57. Dias, J.-P.; Figueira, M.. "On the decay of the solutions of some linear Schrödinger equations". Rendiconti del Seminario Matematico. Università e Politecnico Torino (1984):
  58. Dias, J.-P.; Figueira, M.. "Décroissance à l'infini de certaines solutions avec énergie positive de l'équation de Schrödinger-Hartree". C. R. Acad. Sci. Paris Sér. I Math. (1983):
  59. Dias, J.-P.; Figueira, M.. "On the decay of the solutions of some nonlinear Schrödinger equations". Portugal. Math. (1982):
  60. Dias, J.-P.; Figueira, M.. "Conservation laws and time decay for the solutions of some nonlinear Schrödinger-Hartree equations and systems". Journal of Mathematical Analysis and Applications 84 2 (1981): 486-508. http://www.scopus.com/inward/record.url?eid=2-s2.0-0040116540&partnerID=MN8TOARS.
    10.1016/0022-247X(81)90182-7
  61. Dias, J.-P.; Figueira, M.. "Décroissance à l'infini de la solution d'une équation non linéaire du type Schrödinger-Hartree". Comptes Rendus de l'Académie des Sciences de Paris, Série A (1980):
  62. Baillon, J-B.; Cazenave, T.; Figueira, M.. "Équation de Schrödinger avec non-linéarité intégrale". C. R. Acad. Sci. Paris, serie A (1977):
  63. Baillon, J-B.; Cazenave, T.; Figueira, M.. "Équation de Schrödinger non linéaire". C. R. Acad. Sci. Paris, serie A (1977):
  64. FIGUEIRA, MÁRIO; Haraux, Alain. "Théorèmes de surjectivité pour une classe d'opérateurs dans les espaces de Hilbert". Portugal. Math. 36 3-4 (1977): 191-195.
    Acesso aberto • Publicado • Editor
Capítulo de livro
  1. Dias, J.-P.; Figueira, M.; Sanchez L.. "Formation of singularities for the solutions of some quasilinear wave equations". 1998.
  2. Dias, J.-P.; Figueira, M.. "The Cauchy problem for the Dirac equation with cubic nonlinearity in three space dimensions". 1989.
Distinções

Prémio

1989 Prémio Gulbenkian de Ciência e Tecnologia
Fundação Calouste Gulbenkian, Portugal