???global.info.a_carregar???
Diogo R. Ferreira is an associate professor of information systems at IST, University of Lisbon, and a researcher affiliated with the Institute for Plasmas and Nuclear Fusion (IPFN) in Portugal. Since 2014, he has been applying deep learning and GPU computing to the analysis and processing of fusion data from plasma diagnostics, especially at the Joint European Torus (JET) and other EUROfusion devices. His work has been highlighted at the Nvidia GPU Technology Conference and has been published in journals such as Plasma Physics and Controlled Fusion, and Machine Learning: Science and Technology. These often serve as references for other applications of machine learning in the field of plasma physics. He is the author of two books and has supervised 2 PhD students and 30+ MSc students.
Identification

Personal identification

Full name
DIOGO MANUEL RIBEIRO FERREIRA

Citation names

  • Diogo R. Ferreira
  • D. R. Ferreira

Author identifiers

Ciência ID
061C-AE88-DC66
ORCID iD
0000-0001-5818-9406
Google Scholar ID
CSEqKy8AAAAJ

Email addresses

  • diogo.ferreira@tecnico.ulisboa.pt (Professional)

Telephones

Telephone
  • 214233552 (Professional)

Addresses

  • Instituto Superior Técnico, Campus do Taguspark, Avenida Prof. Dr. Cavaco Silva, 2744-016, Porto Salvo, Oeiras, Portugal (Professional)

Websites

Knowledge fields

  • Exact Sciences - Computer and Information Sciences
  • Exact Sciences - Physical Sciences - Fluids and Plasma Physics

Languages

Language Speaking Reading Writing Listening Peer-review
English Proficiency (C2) Proficiency (C2) Proficiency (C2) Proficiency (C2) Proficiency (C2)
French Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2)
German Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2)
Swedish Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2) Elementary (A2)
Education
Degree Classification
2000/09/01 - 2004/02/17
Concluded
Engenharia Electrotécnica e de Computadores (Doutoramento)
Universidade do Porto Faculdade de Engenharia, Portugal
"Workflow Management Systems Supporting the Engineering of Business Networks" (THESIS/DISSERTATION)
1994/09/01 - 1999/07/31
Concluded
Engenharia Electrotécnica e de Computadores (Licenciatura)
Major in Automação, Controlo e Instrumentação
Universidade do Porto Faculdade de Engenharia, Portugal
Affiliation

Teaching in Higher Education

Category
Host institution
Employer
2023/09 - Current Associate Professor (University Teacher) Universidade de Lisboa Instituto Superior Técnico, Portugal
2006/02 - 2023/08 Assistant Professor (University Teacher) Universidade de Lisboa Instituto Superior Técnico, Portugal
2004/05 - 2006/02 Invited Assistant Professor (University Teacher) Universidade do Porto Faculdade de Engenharia, Portugal
2003/09 - 2004/05 Invited Assistant (University Teacher) Universidade do Porto Faculdade de Engenharia, Portugal
Projects

Contract

Designation Funders
2013 - 2015 PADSTEP
24724
Researcher
Instituto de Engenharia de Sistemas e Computadores Novas Tecnologias, Portugal
Quadro de Referência Estratégico Nacional
Concluded
2007 - 2010 COLABORATÓRIO
PTDC/CCI/70512/2006
Researcher
Instituto de Engenharia de Sistemas e Computadores Novas Tecnologias, Portugal
Fundação para a Ciência e a Tecnologia
Concluded
2008 - 2009 UPCASE
UPCASE
Researcher
Universidade de Lisboa Instituto Superior Técnico, Portugal
PT Inovação
Concluded
2000 - 2002 DAMASCOS
IST-1999-11850
Researcher
Instituto de Engenharia de Sistemas e Computadores Tecnologia e Ciência, Portugal
European Commission Fifth Framework Programme for Research and Development
Concluded
1999 - 2001 PRONEGI
IC-PME-PRONEGI
Researcher
Instituto de Engenharia de Sistemas e Computadores Tecnologia e Ciência, Portugal
Agência Nacional de Inovação SA
Concluded

Other

Designation Funders
2019/08 - 2020/02 DELADIS
DELADIS
Principal investigator
Instituto de Plasmas e Fusão Nuclear, Portugal
European Consortium for the Development of Fusion Energy
Concluded
Outputs

Publications

Book
  1. Ferreira, Diogo R.. A Primer on Process Mining. Springer International Publishing. 2020.
    10.1007/978-3-030-41819-9
  2. Diogo R. Ferreira. A Primer on Process Mining. Springer International Publishing. 2017.
    10.1007/978-3-319-56427-2
  3. Ferreira, Diogo R.. Enterprise Systems Integration. Springer Berlin Heidelberg. 2013.
    10.1007/978-3-642-40796-3
Book chapter
  1. "The Tracking Machine Learning Challenge: Accuracy Phase". 2020.
    10.1007/978-3-030-29135-8_9
  2. "A Survey of Process Mining Competitions: The BPI Challenges 2011–2018". 2019.
    10.1007/978-3-030-37453-2_22
Conference paper
  1. "Assessing Agile Software Development Processes with Process Mining: A Case Study". 2018.
    10.1109/CBI.2018.00021
  2. Andre C. Santos; Pedro C. Diniz; Joao M.P. Cardoso; Diogo R. Ferreira. "A Domain-Specific Language for the Specification of Adaptable Context Inference". 2011.
    10.1109/euc.2011.4
  3. Daniel Gillblad; Rebecca Steinert; Diogo R. Ferreira. "Estimating the Parameters of Randomly Interleaved Markov Models". 2009.
    10.1109/icdmw.2009.17
Journal article
  1. "Explainable deep learning for the analysis of MHD spectrograms in nuclear fusion". Machine Learning: Science and Technology 3 1 (2022): 015015-015015. http://dx.doi.org/10.1088/2632-2153/ac44aa.
    10.1088/2632-2153/ac44aa
  2. "Investigating the physics of disruptions with real-time tomography at JET". Plasma Science and Technology (2021): http://dx.doi.org/10.1088/2058-6272/ac3ba4.
    10.1088/2058-6272/ac3ba4
  3. "A brief comment on the numerical results in 'Electrostatic potential of a uniformly charged triangle in barycentric coordinates'". European Journal of Physics 42 6 (2021): 068001-068001. http://dx.doi.org/10.1088/1361-6404/ac1b72.
    10.1088/1361-6404/ac1b72
  4. "Using HPC infrastructures for deep learning applications in fusion research". Plasma Physics and Controlled Fusion 63 8 (2021): 084006-084006. http://dx.doi.org/10.1088/1361-6587/ac0a3b.
    10.1088/1361-6587/ac0a3b
  5. "Progress in preparing real-time control schemes for Deuterium-Tritium operation in JET". Fusion Engineering and Design 166 (2021): 112305-112305. http://dx.doi.org/10.1016/j.fusengdes.2021.112305.
    10.1016/j.fusengdes.2021.112305
  6. "Influences of heating and plasma density on impurity production and transport during the ramp-down phase of JET ILW discharge". Plasma Physics and Controlled Fusion 63 3 (2021): 035008-035008. https://doi.org/10.1088/1361-6587/abd13c.
    10.1088/1361-6587/abd13c
  7. "Monitoring the plasma radiation profile with real-time bolometer tomography at JET". Fusion Engineering and Design 164 (2021): 112179-112179. https://www.sciencedirect.com/science/article/pii/S0920379620307274.
    https://doi.org/10.1016/j.fusengdes.2020.112179
  8. "Onset of tearing modes in plasma termination on JET: the role of temperature hollowing and edge cooling". Nuclear Fusion (2021): http://iopscience.iop.org/article/10.1088/1741-4326/abe3c7.
  9. "Assessment of tomography signals in view of neural network reconstruction at ISTTOK". Journal of Instrumentation (2020): http://dx.doi.org/10.1088/1748-0221/15/01/c01022.
    10.1088/1748-0221/15/01/c01022
  10. "Deep Learning for Plasma Tomography and Disruption Prediction From Bolometer Data". IEEE Transactions on Plasma Science 48 1 (2020): 36-45. http://dx.doi.org/10.1109/tps.2019.2947304.
    10.1109/TPS.2019.2947304
  11. "Deep Learning for the Analysis of Disruption Precursors Based on Plasma Tomography". Fusion Science and Technology 76 8 (2020): 901-911. https://doi.org/10.1080/15361055.2020.1820749.
    10.1080/15361055.2020.1820749
  12. "Overview of the JET preparation for deuterium–tritium operation with the ITER like-wall". Nuclear Fusion (2019): http://dx.doi.org/10.1088/1741-4326/ab2276.
    10.1088/1741-4326/ab2276
  13. "Deep neural networks for plasma tomography with applications to JET and COMPASS". Journal of Instrumentation (2019): http://dx.doi.org/10.1088/1748-0221/14/09/c09011.
    10.1088/1748-0221/14/09/c09011
  14. "Experimental validation of plasma tomography algorithms at ISTTOK". Journal of Instrumentation (2019): http://dx.doi.org/10.1088/1748-0221/14/08/c08006.
    10.1088/1748-0221/14/08/c08006
  15. "Current Research into Applications of Tomography for Fusion Diagnostics". Journal of Fusion Energy (2019): http://dx.doi.org/10.1007/s10894-018-0178-x.
    10.1007/s10894-018-0178-x
  16. "Full-Pulse Tomographic Reconstruction with Deep Neural Networks". Fusion Science and Technology (2018): 1-10. https://doi.org/10.1080%2F15361055.2017.1390386.
    10.1080/15361055.2017.1390386
  17. "Deep learning for plasma tomography using the bolometer system at JET". Fusion Engineering and Design 114 (2017): 18-25. https://doi.org/10.1016%2Fj.fusengdes.2016.11.006.
    10.1016/j.fusengdes.2016.11.006
  18. Diogo R. Ferreira; Pedro J. Carvalho; Horácio Fernandes; JET Contributors. "Robust regression with CUDA and its application to plasma reflectometry". Review of Scientific Instruments 86 11 (2015): 113507-113507. https://doi.org/10.1063%2F1.4935882.
    10.1063/1.4935882
  19. Diogo R. Ferreira; Fernando Szimanski; Célia Ghedini Ralha. "Mining the low-level behaviour of agents in high-level business processes". International Journal of Business Process Integration and Management 6 2 (2013): 146-146. https://doi.org/10.1504%2Fijbpim.2013.054678.
    10.1504/ijbpim.2013.054678
  20. Diogo R. Ferreira; Lucinéia H. Thom. "A semantic approach to the discovery of workflow activity patterns in event logs". International Journal of Business Process Integration and Management 6 1 (2012): 4-4. https://doi.org/10.1504%2Fijbpim.2012.047909.
    10.1504/ijbpim.2012.047909
  21. Michal Walicki; Diogo R. Ferreira. "Sequence partitioning for process mining with unlabeled event logs". Data & Knowledge Engineering 70 10 (2011): 821-841. https://doi.org/10.1016%2Fj.datak.2011.05.003.
    10.1016/j.datak.2011.05.003

Other

Other output
  1. Parallelization of Transition Counting for Process Mining on Multi-core CPUs and GPUs. 2017. Diogo R. Ferreira; Rui M. Santos. https://doi.org/10.1007%2F978-3-319-58457-7_3.
    10.1007/978-3-319-58457-7_3
  2. Improving Business Process Models with Agent-Based Simulation and Process Mining. 2013. Fernando Szimanski; Célia G. Ralha; Gerd Wagner; Diogo R. Ferreira. https://doi.org/10.1007%2F978-3-642-38484-4_10.
    10.1007/978-3-642-38484-4_10
  3. Securely Storing and Executing Business Processes in the Cloud. 2013. David Martinho; Diogo R. Ferreira. https://doi.org/10.1007%2F978-3-642-36285-9_70.
    10.1007/978-3-642-36285-9_70
  4. A Hierarchical Markov Model to Understand the Behaviour of Agents in Business Processes. 2013. Diogo R. Ferreira; Fernando Szimanski; Célia Ghedini Ralha. https://doi.org/10.1007%2F978-3-642-36285-9_16.
    10.1007/978-3-642-36285-9_16
  5. Discovering User Communities in Large Event Logs. 2012. Diogo R. Ferreira; Cláudia Alves. https://doi.org/10.1007%2F978-3-642-28108-2_11.
    10.1007/978-3-642-28108-2_11
  6. Ontology-Based Discovery of Workflow Activity Patterns. 2012. Diogo R. Ferreira; Susana Alves; Lucinéia H. Thom. https://doi.org/10.1007%2F978-3-642-28115-0_30.
    10.1007/978-3-642-28115-0_30
  7. Understanding Spaghetti Models with Sequence Clustering for ProM. 2010. Gabriel M. Veiga; Diogo R. Ferreira. https://doi.org/10.1007%2F978-3-642-12186-9_10.
    10.1007/978-3-642-12186-9_10
  8. Context Inference for Mobile Applications in the UPCASE Project. 2009. André C. Santos; Luís Tarrataca; João M. P. Cardoso; Diogo R. Ferreira; Pedro C. Diniz; Paulo Chainho. https://doi.org/10.1007%2F978-3-642-01802-2_26.
    10.1007/978-3-642-01802-2_26
Activities

Oral presentation

Presentation title Event name
Host (Event location)
2021/10 AI Meets Nuclear Fusion NVAITC Webinar Series on AI Applications in Computational Sciences
Finnish Center for Artificial Intelligence (FCAI) (Helsínquia, Finland)
2021/05 Termination of Discharges in High Performance Scenarios in JET 28th IAEA Fusion Energy Conference
International Atomic Energy Agency (IAEA) (Cadarache, France)
2020/12 Deep Learning for Plasma Tomography in Nuclear Fusion NeurIPS 2020 Workshop on Deep Learning and Inverse Problems
(Vancouver, Canada)
2020/11 Use of HPC Infrastructures for Deep Learning in Fusion Research 1st Spanish Fusion HPC Workshop
(Barcelona, Spain)
2020/09 Plasma Monitoring and Control with Real-Time Tomography at JET 31st Symposium on Fusion Technology (SOFT2020)
2020/09 Progress in preparing real-time control schemes for Deuterium-Tritium operation in JET 31st Symposium on Fusion Technology (SOFT2020)
2020/07 Identifying Disruption Precursors by Anomaly Detection on Bolometer Tomography IAEA Technical Meeting on Plasma Disruptions and their Mitigation
2019/08 Deep Learning for Plasma Tomography and Disruption Prediction CCFE Physics and Technology Meeting
(Abingdon, United Kingdom)
2019/07 An introduction to Plasma Tomography ISTTOK Training Program on Tokamak Engineering and Operation
(Lisboa, Portugal)
2019/06 Deep Learning for Plasma Tomography and Disruption Prediction MIT-PSFC Machine Learning Working Group
(Boston, United States)
2018/10 Applications of Deep Learning to Nuclear Fusion Research NVIDIA GPU Technology Conference
(Munique, Germany)
2018/10 Early Identification of Disruption Paths for Prevention and Avoidance 27th IAEA Fusion Energy Conference
International Atomic Energy Agency (IAEA) (Ahmedabad, India)
2018/07 An introduction to Plasma Tomography ISTTOK Training Program on Tokamak Engineering and Operation
(Lisboa, Portugal)
2018/07 Regularization extraction for real-time plasma tomography at JET 45th EPS Conference on Plasma Physics
(Praga, Czech Republic)
2018/06 Analysis of the ramp-down phase of JET ILW discharges 3rd International Conference on Plasma Surface Interactions in Controlled Fusion Devices
(Princeton, United States)
2017/06 Full-pulse tomographic reconstruction with deep neural networks 2nd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis
MIT Plasma Science and Fusion Center (PSFC) (Boston, United States)

Journal scientific committee

Journal title (ISSN) Publisher
2021 - Current Neural Networks Elsevier
2020 - Current Fusion Engineering and Design Elsevier
2019 - Current Plasma Physics and Controlled Fusion IOP
2019 - Current Nuclear Instruments and Methods in Physics Research Elsevier
2019 - Current IEEE Transactions on Plasma Science IEEE
2019 - Current Journal of Instrumentation IOP
2018 - Current Nuclear Fusion IOP
2017 - Current Data & Knowledge Engineering (0169-023X) Elsevier
2017 - Current Review of Scientific Instruments AIP
Distinctions

Award

2023 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2022 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2020 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2020 IOP trusted reviewer
IOP Publishing Ltd, United Kingdom
2019 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2018 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2017 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2016 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2015 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2013 Best Paper Award
Universidade do Porto Faculdade de Ciências, Portugal
2013 Excellence in Teaching Award
Universidade de Lisboa Instituto Superior Técnico, Portugal
2012 ICGA Journal Award
International Computer Games Association, Netherlands
2005 Best Paper Award
Universiteit Twente, Netherlands