Book chapter |
- Cláudia Afonso; Arthur Matta; Luís Miguel Matos; Miguel Bastos Gomes; Antonina Santos; André Pilastri; Paulo Cortez. "Machine
Learning for Predicting Production Disruptions in the Wood-Based Panels Industry: A Demonstration Case". 2023.
10.1007/978-3-031-34107-6_27
- Ferreira, César; Fertuzinhos, Aureliano; Silva, Ricardo; Ramalho, Miguel; Vale, Bruno; Silva, João; Costa, Luani; et al. "Powered
Smart Textile-Based Exoskeleton for Human Support Movement". In Proceedings of the 9th International Ergonomics Conference,
113-121. Springer Nature Switzerland, 2023.
10.1007/978-3-031-33986-8_13
- Afonso Sousa; Luís Ferreira; Rui Ribeiro; João Xavier; André Pilastri; Paulo Cortez. "Production Time Prediction for Contract
Manufacturing Industries Using Automated Machine Learning". 2022.
10.1007/978-3-031-08337-2_22
- Gonçalo Fontes; Luís Miguel Matos; Arthur Matta; André Pilastri; Paulo Cortez. "An Empirical Study on Anomaly Detection Algorithms
for Extremely Imbalanced Datasets". 2022.
10.1007/978-3-031-08333-4_7
- Pereira, Pedro José; Pereira, Adriana; Cortez, Paulo; Pilastri, André. "A Comparison of Machine Learning Methods for Extremely
Unbalanced Industrial Quality Data". In Progress in Artificial Intelligence, 561-572. Springer International Publishing,
2021.
- Gabriel Coelho; Pedro Pereira; Luis Matos; Alexandrine Ribeiro; Eduardo C. Nunes; André Ferreira; Paulo Cortez; André Pilastri.
"Deep Dense and Convolutional Autoencoders for Machine Acoustic Anomaly Detection". 337-348. Springer International Publishing,
2021.
- Rui Ribeiro; André Pilastri; Hugo Carvalho; Arthur Matta; Pedro José Pereira; Pedro Rocha; Marcelo Alves; Paulo Cortez. "An
Intelligent Decision Support System for Production Planning in Garments Industry". 2021.
10.1007/978-3-030-91608-4_37
- Luís Ferreira; André Pilastri; Vítor Sousa; Filipe Romano; Paulo Cortez. "Prediction of Maintenance Equipment Failures Using
Automated Machine Learning". 2021.
10.1007/978-3-030-91608-4_26
- Luís Ferreira; André Pilastri; Carlos Martins; Pedro Santos; Paulo Cortez. "A Scalable and Automated Machine Learning Framework
to Support Risk Management". 2021.
- Ferreira, Luís; Pilastri, André Luiz; Martins, Carlos; Santos, Pedro; Cortez, Paulo. "A scalable and automated machine learning
framework to support risk management". Springer, 2021.
10.1007/978-3-030-71158-0_14
- Rui Ribeiro; André Pilastri; Carla Moura; Filipe Rodrigues; Rita Rocha; José Morgado; Paulo Cortez. "Predicting Physical Properties
of Woven Fabrics via Automated Machine Learning and Textile Design and Finishing Features". 244-255. Springer International
Publishing, 2020.
10.1007/978-3-030-49186-4_21
- António João Silva; Paulo Cortez; André Pilastri. "Chemical Laboratories 4.0: A Two-Stage Machine Learning System for Predicting
the Arrival of Samples". 232-243. Springer International Publishing, 2020.
10.1007/978-3-030-49186-4_20
|
Conference paper |
- Pedro José Pereira; Carlos Gonçalves; Lara Lopes Nunes; Paulo Cortez; André Pilastri. "AI4CITY - An Automated Machine Learning
Platform for Smart Cities". 2023.
10.1145/3555776.3578740
- João Nuno Oliveira; Luani Costa; Ana Ramôa; Ricardo Silva; Aureliano Fertuzinhos; Bruno Vale; Inês Estudante; et al. "Worker
4.0: A Textile Exoskeleton to Support Apparel Industry". 2023.
10.54941/ahfe1003636
- Fernandes, Cristiana; Matos, Luis Miguel; Folgado, Duarte; Nunes, Maria Lua; Pereira, Joao Rui; Pilastri, Andre; Cortez, Paulo.
"A Deep Learning Approach to Prevent Problematic Movements of Industrial Workers Based on Inertial Sensors". 2022.
10.1109/IJCNN55064.2022.9892409
- Macedo, Luisa; Matos, Luis Miguel; Cortez, Paulo; Domingues, Andre; Moreira, Guilherme; Pilastri, Andre. "A Machine Learning
Approach for Spare Parts Lifetime Estimation". 2022.
10.5220/0010903800003116
- Ferreira, Luis; Silva, Leopoldo; Pinho, Diana; Morais, Francisco; Martins, Carlos Manuel; Pires, Pedro Miguel; Fidalgo, Pedro;
et al. "A Federated Machine Learning Approach to Detect International Revenue Share Fraud on the 5G Edge". 2022.
10.1145/3477314.3507322
- Pilastri, Andre. "A Comparison of AutoML Tools for Machine Learning, Deep Learning and XGBoost". 2021.
10.1109/ijcnn52387.2021.9534091
- Matos, Luís Miguel; Domingues, André; Moreira, Guilherme; Cortez, Paulo; Pilastri, André Luiz. "A comparison of machine learning
approaches for predicting in-car display production quality". 2021.
10.1007/978-3-030-91608-4_1
- Ribeiro, Diogo Aires Gonçalves; Matos, Luís Miguel; Cortez, Paulo; Moreira, Guilherme; Pilastri, André Luiz. "A comparison
of anomaly detection methods for industrial screw tightening". 2021.
10.1007/978-3-030-86960-1_34
- Coelho, Gabriel; Pereira, Pedro; Matos, Luis; Ribeiro, Alexandrine; Nunes, Eduardo C.; Ferreira, André; Cortez, Paulo; Pilastri,
André. "Deep dense and convolutional autoencoders for machine acoustic anomaly detection". 2021.
10.1007/978-3-030-79150-6_27
- Pereira, Pedro José; Pereira, Adriana; Cortez, Paulo; Pilastri, André Luiz. "A comparison of machine learning methods for
extremely unbalanced industrial quality data". 2021.
10.1007/978-3-030-86230-5_44
- Ferreira, Luís; Pilastri, André Luiz; Martins, Carlos Manuel; Pires, Pedro Miguel; Cortez, Paulo. "A Comparison of AutoML
Tools for Machine Learning, Deep Learning and XGBoost". 2021.
10.1109/IJCNN52387.2021.9534091
- Pereira, Pedro José; Coelho, Gabriel José Dias; Ribeiro, Alexandrine; Matos, Luís Miguel Rocha; Nunes, Eduardo Carvalho; Ferreira,
André; Pilastri, André Luiz; Cortez, Paulo. "Using deep autoencoders for in-vehicle audio anomaly detection". 2021.
- Pilastri, Andre. "Predicting the Tear Strength of Woven Fabrics Via Automated Machine Learning: An Application of the CRISP-DM
Methodology". 2020.
10.5220/0009411205480555
- Pilastri, Andre. "An Automated and Distributed Machine Learning Framework for Telecommunications Risk Management". 2020.
10.5220/0008952800990107
- Ribeiro, Rui; Pilastri, André; Moura, Carla; Rodrigues, Filipe; Rocha, Rita; Morgado, José; Cortez, Paulo. "Predicting physical
properties of woven fabrics via automated machine learning and textile design and finishing features". 2020.
10.1007/978-3-030-49186-4_21
- Ferreira, Luís; Pilastri, André; Martins, Carlos; Santos, Pedro; Cortez, Paulo. "An automated and distributed machine learning
framework for telecommunications risk management". 2020.
10.5220/0008952800990107
- Silva, António João; Cortez, Paulo; Pilastri, André. "Chemical laboratories 4.0: A two-stage machine learning system for predicting
the arrival of samples". 2020.
10.1007/978-3-030-49186-4_20
- Ribeiro, Rui; Pilastri, André; Moura, Carla; Rodrigues, Filipe; Rocha, Rita; Cortez, Paulo. "Predicting the tear strength
of woven fabrics via automated machine learning: an application of the CRISP-DM methodology". 2020.
10.5220/0009411205480555
- Andre Pilastri; João Papa; João Manuel R. S. Tavares. "Segmentation of Skin in dermatoscopic images using SuperPixels combined
with Complex Networks". 2018.
- Ferrarezi, J.C.; Neto, M.P.; Dias, D.R.C.; Pilastri, A.L.; De Paiva Guimarães, M.; Brega, J.R.F.. "LibViews - An information
visualization application for third-party libraries on software projects". 2016.
10.1109/IV.2016.43
- Fernandes, S.E.N.; Pilastri, A.L.; Pereira, L.A.M.; Pires, R.G.; Papa, J.P.. "Learning kernels for support vector machines
with polynomial powers of sigmoid". 2014.
10.1109/SIBGRAPI.2014.36
|
Journal article |
- Paula Dias; Arthur Matta; André Pilastri; Luís Miguel Matos; Paulo Cortez. "RTSIMU: Real-Time Simulation tool for IMU sensors".
Software Impacts 17 (2023): 100522-100522. http://dx.doi.org/10.1016/j.simpa.2023.100522.
10.1016/j.simpa.2023.100522
- Rui Ribeiro; André Pilastri; Carla Moura; José Morgado; Paulo Cortez. "A data-driven intelligent decision support system that
combines predictive and prescriptive analytics for the design of new textile fabrics". Neural Computing and Applications
35 23 (2023): 17375-17395. http://dx.doi.org/10.1007/s00521-023-08596-9.
10.1007/s00521-023-08596-9
- Luís Ferreira; Leopoldo Silva; Francisco Morais; Carlos Manuel Martins; Pedro Miguel Pires; Helena Rodrigues; Paulo Cortez;
André Pilastri. "International revenue share fraud prediction on the 5G edge using federated learning". Computing (2023):
http://dx.doi.org/10.1007/s00607-023-01174-w.
10.1007/s00607-023-01174-w
- Paulo Peças; Lenin John; Inês Ribeiro; António J. Baptista; Sara M. Pinto; Rui Dias; Juan Henriques; et al. "Holistic Framework
to Data-Driven Sustainability Assessment". Sustainability (2023): https://doi.org/10.3390/su15043562.
10.3390/su15043562
- Diogo Ribeiro; Luís Miguel Matos; Jose Guilherme Cruz Moreira; Andre Pilastri; Paulo Cortez. "Isolation Forests and Deep Autoencoders
for Industrial Screw Tightening Anomaly Detection". Computers (2022): https://www.mdpi.com/2073-431X/11/4/54.
10.3390/computers11040054
- Matos, Luis Miguel; Azevedo, Joao; Matta, Arthur; Pilastri, Andre; Cortez, Paulo; Mendes, Rui. "Categorical Attribute traNsformation
Environment (CANE): A python module for categorical to numeric data preprocessing". Software Impacts (2022): https://publons.com/wos-op/publon/53369258/.
10.1016/J.SIMPA.2022.100359
- Carvalho, Hugo Silva; Pilastri, Andre; Novais, Rui; Cortez, Paulo. "Original publication RanCoord - A random geographic coordinates
generator for transport and logistics research and development activities". Software Impacts (2022): https://publons.com/wos-op/publon/54849771/.
10.1016/J.SIMPA.2022.100428
- João Azevedo; Rui Ribeiro; Luís Miguel Matos; Rui Sousa; João Paulo Silva; André Pilastri; Paulo Cortez. "Predicting Yarn
Breaks in Textile Fabrics: A Machine Learning Approach". Procedia Computer Science (2022): https://publons.com/wos-op/publon/54849788/.
10.1016/J.PROCS.2022.09.289
- Coelho, Gabriel; Matos, Luis Miguel; Pereira, Pedro Jose; Ferreira, Andre; Pilastri, Andre; Cortez, Paulo. "Deep autoencoders
for acoustic anomaly detection: experiments with working machine and in-vehicle audio". Neural Computing and Applications
(2022): https://publons.com/wos-op/publon/52578760/.
10.1007/S00521-022-07375-2
- António João Silva; Paulo Cortez; Carlos Pereira; André Pilastri. "Business analytics in Industry 4.0: A systematic review".
Expert Systems (2021): https://doi.org/10.1111/exsy.12741.
10.1111/exsy.12741
- Silva, António João; Cortez, Paulo; Pereira, Carlos; Pilastri, André. "Business analytics in industry 4.0: a systematic review".
(2021): http://hdl.handle.net/1822/73739.
- Pilastri, Andre. "Using Deep Autoencoders for In-vehicle Audio Anomaly Detection". Procedia Computer Science 192 (2021):
298-307. http://dx.doi.org/10.1016/j.procs.2021.08.031.
10.1016/j.procs.2021.08.031
|