???global.info.a_carregar???
Identification

Personal identification

Full name
João Perdiz

Author identifiers

Ciência ID
771C-EFEB-73FE
ORCID iD
0000-0002-6589-141X
Education
Degree Classification
2015 - 2023
Ongoing
Doutoramento em Engenharia Electrotécnica e Computadores (Doutoramento)
Major in Automação e Robótica
Universidade de Coimbra Departamento de Engenharia Electrotécnica e de Computadores, Portugal
Affiliation

Science

Category
Host institution
Employer
2019/11/01 - Current Researcher (Research) Universidade de Coimbra Instituto de Sistemas e Robótica, Portugal
2014/03/01 - 2015/06/30 Researcher (Research) Universidade de Coimbra Instituto de Sistemas e Robótica, Portugal
Projects

Grant

Designation Funders
2022/07/01 - 2023/03/27 Move4ASD - Multimodal Motion Analysis Using Machine Learning-based Techniques for Autism Spectrum Disorder Characterization
UIDB/0048/2020
Research Fellow
2021/10/01 - 2021/12/31 MATIS - Materiais e Tecnologias Industriais Sustentáveis
CENTRO-01-0145-FEDER-000014
Research Fellow
Concluded
2021/07/01 - 2021/09/30 LANDMARK - Sistema Integrado de Comunicações e Lidar
PTDC/EEI-COM/031527/2017
Research Fellow
2019/11 - 2021/02 Projecto B-RELIABLE: SAICT/30935/ 2017
030935
Fundação para a Ciência e a Tecnologia
2015/10 - 2019/09 Emotion detection and learning based on biosignals for Human-robot interaction
39829DFA
Fundação para a Ciência e a Tecnologia
2014/03/01 - 2015/06/30 AMS-HMI12 - Assisted mobility supported by shared-control and advanced Human-Machine Interfaces
RECI/EEI-AUT/0181/2012
Research Fellow
Universidade de Coimbra Instituto de Sistemas e Robótica, Portugal
Outputs

Publications

Conference paper
  1. Luís Garrote; João Perdiz; Urbano J. Nunes. "Costmap-based Local Motion Planning using Deep Reinforcement Learning". 2023.
    10.1109/ro-man57019.2023.10309389
  2. Garrote, Luis; Torres, Miguel; Barros, Tiago; Perdiz, Joao; Premebida, Cristiano; Nunes, Urbano J.. "Mobile Robot Localization with Reinforcement Learning Map Update Decision aided by an Absolute Indoor Positioning System". 2019.
    10.1109/iros40897.2019.8967957
  3. Garrote, Luis; Perdiz, Joao; Pires, Gabriel; Nunes, Urbano J.. "Reinforcement Learning Motion Planning for an EOG-centered Robot Assisted Navigation in a Virtual Environment". 2019.
    10.1109/ro-man46459.2019.8956348
  4. Perdiz, João; Cruz, Aniana; Nunes, Urbano J.; Pires, Gabriel. "A Hybrid Brain-Computer Interface Fusing P300 ERP and Electrooculography". 2019.
    10.1007/978-3-030-31635-8_213
  5. Garrote, Luis; Paulo, Joao; Perdiz, Joao; Peixoto, Paulo; Nunes, Urbano J.. "Robot-Assisted Navigation for a Robotic Walker with Aided User Intent". 2018.
    10.1109/roman.2018.8525674
  6. Perdiz, Joao; Garrote, Luis; Pires, Gabriel; Nunes, Urbano J.. "Measuring the impact of reinforcement learning on an electrooculography-only computer game". 2018.
    10.1109/segah.2018.8401359
  7. Perdiz, Joao; Pires, Gabriel; Nunes, Urbano J.. "Emotional state detection based on EMG and EOG biosignals: A short survey". 2017.
    10.1109/enbeng.2017.7889451
Conference poster
  1. João Ruivo Paulo; Teresa Sousa; João Perdiz; Nicoli Leal; Paulo Menezes; Tingting Zhu; Gabriel Pires; Miguel Castelo-Branco. "A Framework For Motor Function Characterization in Autism Spectrum Disorder". 2023.
    10.1109/enbeng58165.2023.10175324
Journal article
  1. Luís Garrote; João Perdiz; Luís A. da Silva Cruz; Urbano J. Nunes. "Point Cloud Compression: Impact on Object Detection in Outdoor Contexts". Sensors (2022): https://doi.org/10.3390/s22155767.
    10.3390/s22155767
  2. Joao Perdiz; Luis Garrote; Gabriel Pires; Urbano J. Nunes. "A Reinforcement Learning Assisted Eye-Driven Computer Game Employing a Decision Tree-Based Approach and CNN Classification". IEEE Access 9 (2021): 46011-46021. https://doi.org/10.1109/ACCESS.2021.3068055.
    10.1109/ACCESS.2021.3068055
Thesis / Dissertation
  1. Perdiz, João Bernardo de Azeredo Keating. "Câmara para análise por difracção de raios-x de hidretos metálicos activados. Aplicação ao LaNi5.". Master, 2013. http://hdl.handle.net/10316/25091.