???global.info.a_carregar???
Identification

Personal identification

Full name
Sofia da Silva Fernandes

Citation names

  • Fernandes, Sofia

Author identifiers

Ciência ID
7A1C-9F67-8AC9
ORCID iD
0000-0002-0030-7155
Education
Degree Classification
2020/06/02
Concluded
Matemática Aplicada (Doutoramento)
Major in Sem especialidade
Universidade do Porto Faculdade de Ciências, Portugal
"Tensor-based Approaches for Evolving Social Network Analysis" (THESIS/DISSERTATION)
2015
Concluded
Matemática e Aplicações (Mestrado)
Major in Área de especialização: Ciências da Computação
Universidade de Aveiro, Portugal
"Classificação Automática do Estado de Células Microglia Usando Stacked Denoising Auto-encoders" (THESIS/DISSERTATION)
18 valores
Affiliation

Teaching in Higher Education

Category
Host institution
Employer
2023/09/01 - Current Assistant Professor (University Teacher) Universidade Lusófona de Humanidades e Tecnologias, Portugal
2019/03/01 - 2020/07/31 Invited Assistant (University Teacher) Universidade do Porto, Portugal
Outputs

Publications

Book chapter
  1. Leo Tišljaric; Sofia Fernandes; Tonci Caric; Joao Gama. "Spatiotemporal Traffic Anomaly Detection on Urban Road Network Using Tensor Decomposition Method". 674-688. Springer International Publishing, 2020.
    10.1007/978-3-030-61527-7_44
Conference paper
  1. Fernandes, S; Fanaee T, H; Gama, J. "Evolving Social Networks Analysis via Tensor Decompositions: From Global Event Detection Towards Local Pattern Discovery and Specification". 2019.
    10.1007/978-3-030-33778-0_29
  2. Silva Fernandes, Sd; Tork, HF; da Gama, JMP. "The Initialization and Parameter Setting Problem in Tensor Decomposition-Based Link Prediction". 2017.
    10.1109/dsaa.2017.83
  3. Fernandes, S; Sousa, R; Socodato, R; Silva, L. "Stacked denoising autoencoders for the automatic recognition of microglial cells' state". 2016.
Journal article
  1. Sofia Fernandes; Hadi Fanaee-T; João Gama; Leo Tišljaric; Tomislav Šmuc. "WINTENDED: WINdowed TENsor decomposition for Densification Event Detection in time-evolving networks". Machine Learning 112 2 (2023): 459-481. http://dx.doi.org/10.1007/s10994-021-05979-8.
    10.1007/s10994-021-05979-8
  2. Fernandes, S; Fanaee T, H; Gama, J. "Tensor decomposition for analysing time-evolving social networks: an overview". ARTIFICIAL INTELLIGENCE REVIEW (2021):
    10.1007/s10462-020-09916-4
  3. Fernandes, Sofia. "Forecasting Appliances Failures: A Machine-Learning Approach to Predictive Maintenance". Information (2020): http://dx.doi.org/10.3390/info11040208.
    10.3390/info11040208
  4. Fernandes, S; Fanaee T, H; Gama, J. "NORMO: A new method for estimating the number of components in CP tensor decomposition". ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2020):
    10.1016/j.engappai.2020.103926
  5. Tabassum, S; Pereira, FSF; Silva Fernandes, Sd; Gama, J. "Cover Image, Volume 8, Issue 5". Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery (2018):
    10.1002/widm.1281
  6. Fernandes, S; Fanaee T, H; Gama, J. "Dynamic graph summarization: a tensor decomposition approach". DATA MINING AND KNOWLEDGE DISCOVERY (2018):
    10.1007/s10618-018-0583-9

Other

Other output
  1. Social network analysis: An overview. 2018. Tabassum, S; Pereira, FSF; Fernandes, S; Gama, J.
    10.1002/widm.1256